
How Domain Experts Create Conceptual Diagrams and
Implications for Tool Design

Dor Ma’ayan* 1,2 Wode Ni* 2 Katherine Ye2 Chinmay Kulkarni2 Joshua Sunshine2

1Technion - Israel Institute of Technology
Haifa, Israel

dorma10@campus.technion.ac.il

2Carnegie Mellon University
Pittsburgh, PA

woden, kqy, chinmayk, sunshine@cs.cmu.edu

Common secret

= =

Secret colours

+ +

(assume
that mixture separation

is expensive)

Public transport

= =

Secret colours

+ +

Common paint

Alice Bob

Figure 1. Diagrams explain concepts visually in many domains, e.g.: (a) Diffie-Hellman key exchange with colors representing prime multiplication [82].
(b) Linking two views of the Klein 4-group [84]. (c) Unrolling a recurrent LSTM network [58]. (d) Natural numbers as 2D areas in a visual proof [28].

ABSTRACT
Conceptual diagrams are used extensively to understand ab-
stract relationships, explain complex ideas, and solve difficult
problems. To illustrate concepts effectively, experts find ap-
propriate visual representations and translate concepts into
concrete shapes. This translation step is not supported explic-
itly by current diagramming tools. This paper investigates how
domain experts create conceptual diagrams via semi-structured
interviews with 18 participants from diverse backgrounds. Our
participants create, adapt, and reuse visual representations us-
ing both sketches and digital tools. However, they had trouble
using current diagramming tools to transition from sketches
and reuse components from earlier diagrams. Our participants
also expressed frustration with the slow feedback cycles and

*Authors contributed equally and names are in alphabetical order.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CHI ’20, April 25–30, 2020, Honolulu, HI, USA.
© 2020 Association of Computing Machinery.
ACM ISBN 978-1-4503-6708-0/20/04 ...$15.00.
http://dx.doi.org/10.1145/3313831.3376253

barriers to automation of their tools. Based on these results, we
suggest four opportunities of diagramming tools—exploration
support, representation salience, live engagement, and vocab-
ulary correspondence—that together enable a natural dia-
gramming experience. Finally, we discuss possibilities to
leverage recent research advances to develop natural diagram-
ming tools.

Author Keywords
Conceptual Diagramming; Diagram Authoring; Information
Visualization

INTRODUCTION
Visual representations of knowledge allow us to under-
stand and disseminate information more effectively than text
alone [49]. This paper focuses on conceptual diagrams,
which communicate conceptual, procedural, and metacogni-
tive knowledge [41] in visual form.

Conceptual diagrams (sometimes also called explanatory di-
agrams or concept visualization [1]), provide a graphical
overview of conceptual models—the relationship between con-
crete and abstract entities [29]. By giving abstract concepts
visual representations, these diagrams help explain concepts

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 126 Page 1

to oneself and communicate them with others. Explaining con-
cepts using visuals is profoundly important for dissemination
of scientific knowledge and for learning. For instance, the
use of diagrams in a scientific publication positively correlates
with higher scientific impact [45]. Further, creating diagrams
improves learning, both when diagrams are created for oth-
ers [13], and when they are created for self-explanation [4].

While conceptual diagramming is clearly an important form of
knowledge work, unfortunately, tools for creating conceptual
diagrams are still limited. Current tools for diagramming of
conceptual, procedural, and metacognitive knowledge [41]
stand in tension between: a) General-purpose drawing tools
such as Illustrator and Figma that offer simple pen-and-canvas
or box-and-arrow metaphors, but are viscous [24]—users must
constantly commit to exact positions, sizes, and styling of
shapes. b) Dedicated diagramming tools such as Lucidchart
and Gliffy that allow rapid changes, but rely heavily on tem-
plates, limiting diagrammers to a fixed set of visual represen-
tations.

This paper argues that this relatively limited support for dia-
gramming in tools is in part because the process of diagram-
ming is poorly understood. For instance, often diagrammers
start with informal media such as paper or whiteboards, and
edit diagrams digitally before they are presented, but how do
diagrammers manage the evolution of diagrams? How do dia-
grammers utilize the strengths and cope with the limitations
of their tools? Which tools are chosen for what purposes?
Such a detailed understanding of the process can help design
interactive tools to support diagramming.

This paper contributes a description of the process of creating
conceptual diagrams, the difficulties people face while dia-
gramming, and opportunities for tool design. These findings
are based on interviews with 18 domain experts from a wide
variety of disciplines such as math, computer science, architec-
ture, and education. Our interviews reveal that diagrammers
have diverse interactions with visual representations in both
physical sketches and digital tools, including finding, creating,
storing, and reusing representations. When diagrammers tran-
sition from sketches to digital tools, their tool selections are
influenced by their sense of control over object placement and
diagram layout. Participants were concerned with two kinds
of control: local object placement, and global diagram layout.
Current tools, both those that use programming languages (PL)
and those that use direct manipulation (DM) as their interac-
tive metaphor trade-off one kind of control to support the other
more effectively. Consequently, we found that diagrammers
invented their own set of ad hoc and personal reuse patterns to
iterate, simplify, and automate the diagramming workflow.

One implication of our results is the opportunity to design
tools informed by the processes of diagramming, and practices
that domain experts already use, making digital diagramming
more intuitive and efficient. We identify four key opportunities
for natural [56] diagramming tools that allow diagrammers
to express their ideas visually the same way they think about
them:
• Exploration support: supporting exploratory behaviors such

as undo and backtracking during both abstract-level, breath-

first exploration of the design space and low-level refine-
ments of visual details.

• Representation salience: allowing explicit creation and man-
agement of visual representations, i.e. the mappings from
domain constructs to shapes instead of geometric primitives
themselves.

• Live engagement: providing diagrammers with the sense
of agency by designing for liveness and directness of the
diagramming experience.

• Vocabulary correspondence: enabling diagrammers to inter-
act with their diagrams using vocabularies that is conven-
tional in their domain.

For each of the opportunities, we survey existing techniques
from relevant areas to provide tool designers with technical
insights on how it might be implemented.

BACKGROUND & RELATED WORK
This section provides background on three areas of related
work that informed our research: research on the theory be-
hind conceptual diagrams, existing tools for visualization, and
empirical research on diagramming-related activities. Related
work that is directly relevant to the implications of our work
is described in the Implications section.

Conceptual diagrams and their benefits
Conceptual diagrams differ from data visualizations, which
are visual representations of concrete and factual, rather than
conceptual, information. Data visualization techniques enable
people to understand how quantities relate to each other and
gain valuable factual knowledge about the world. Ervin [19]
distinguishes between pictorial and propositional graphics:
instead of directly depicting data, diagrams (propositional
graphics in Ervin’s terms) constitute knowledge and embody
media-independent abstractions for inference-making [44]. In
addition to knowledge representation, conceptual diagrams
are also a medium for creativity and exploration, since they do
not require early commitments to design decisions and focus
on the form of possible solutions [14].

Diagrams have been shown to have cognitive benefits to rea-
soning and problem solving [44, 40, 48]. Compared to textual
representations, diagrams facilitate fast recognition and direct
inference by making the most relevant information explicit
and easily findable [44]. As an external representation of ab-
stract structures of tasks, diagrams can work together with
one’s mental representation and are an indispensable part for
accomplishing distributed cognitive tasks [86]. Hegarty and
Kozhevnikov [30] distinguish between pictorial and schematic
visual representations and show that schematic representations
of relative spatial relationships significantly outperform picto-
rial ones that encode visual appearances.

In addition to their values as an external, static representation
of knowledge, diagrams are also beneficial when people learn
with, instead of from them [75]. In educational contexts, ex-
plicit training of drawing, including the creation of new visual
representations and adoption of new ones, significantly im-
prove students’ ability to work with multiple representations
and improve learning, reasoning, and communication skills [2].

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 126 Page 2

Moreover, creating diagrams as visual explanations also im-
proves learning, since they can act as a check for completeness
and a medium for inference [5]. In general, people do not need
formal training in visual design to create and interpret effective
diagrams and learners at all levels can benefit tremendously
from creating diagrams [66].

Bill Thurston famously wrote "people have very powerful
facilities for taking in information visually... On the other hand,
they do not have a very good built-in facility for inverse vision,
that is, turning an internal spatial understanding back into a
two-dimensional image [74]." In our study, we investigate how
domain experts transform high-level concepts to diagrams.

Existing designs of diagramming tools
Although many diagramming tools support both text-based
and graphical interfaces, we categorize current diagramming
tools by their dominant mode of interaction: programming-
language based (PL) tools and direct manipulation (DM) tools.

We use PL tools to refer to text-based diagramming tools, in-
cluding imperative or declarative programming languages,
libraries, frameworks, and embedded domain-specific lan-
guages. General-purpose tools such as Processing [61], Asym-
tote [7], PGF/TikZ, and Paper.js 1 provide program constructs
that model graphical primitives and operations akin to those
in Scalable Vector Graphics (SVG) [83]. Many of their shared
disadvantages are well summarized in TikZ’s manual [73]:
“steep learning curve, no WYSIWYG, small changes require a
long recompilation time, and the code does not really “show”
how things will look like.” Domain-specific tools allow di-
agram specifications that are higher-level and specialized to
the problem domain to smoothen the learning curve. They are
developed either from scratch (e.g. GraphViz and the DOT
language for graph visualization [17]) or on top of general-
purpose tools (e.g. TikZ’s extensions, tkz-euclide for Eu-
clidean geometry). However, many of them still inherit the
other disadvantages from above.

DM tools represent interactive diagramming tools that sup-
port WYSIWYG interfaces and direct interaction with shapes.
Akin to PL tools, general-purpose DM tools such as Adobe
Illustrator, Inkscape, and Figma also have similar sets of prim-
itives, but often provide a large number of widgets or drawing
tools (e.g. Illustrator CC has nearly 100 built-in tools 2). To
overcome the disadvantage of their highly manual interaction
model, both Illustrator and Inkscape provide language bind-
ings or command-line tools for automation, but they still suffer
from the above problems of PL tools. Popular domain-specific
diagramming tools such as draw.io and Gliffy are template
editors that provide predefined, mostly box-and-arrow style
shapes, limiting users to a narrow set of diagrams. Research
prototypes such as Sketchpad [70] and ThingLab [6] auto-
mate diagram layout using constraint solving, but many edit
actions like selection and shape construction remain manual.
Other prototypes like Apparatus 3 and Bret Victor’s dynamic

1
http://paperjs.org/

2
https://helpx.adobe.com/illustrator/user-guide.html

3
http://aprt.us/

visualization tool [9] incorporate some limited programmatic
operations (e.g. macro recording, variable declaration, and
computed properties) via direct interactions.

As discussed by Satyanarayan et al. in [65], data visualization
tools have transformed over the past decade. The major ad-
vances are characterized by three “waves”: (1) improvement
of individual charts’ quality, (2) theories and tools that enable
mass-production of visualizations, and (3) the convergence of
tools [15]. Whereas the benefits of conceptual diagrams are
clear and theoretical foundations exist, most of the diagram-
ming tools are still not easily scalable and there are large gaps
in existing technologies, notably between PL and DM tools. In
other words, the 2nd wave of conceptual diagramming is still
not here. In this paper, we aim to gain a deep understanding
of people’s diagramming process to drive the design of tools
that fill these gaps.

Empirical studies on diagramming-related activities
Although conceptual diagrams are widely studied as a pow-
erful visual representation in multiple domains, there has not
been a significant amount of prior work that focuses on the au-
thoring of conceptual diagrams, especially with digital tools.

However, prior work in related activities such as note-taking
and whiteboarding suggests some insights for both understand-
ing these activities and opportunities for tool design. Stud-
ies on sketches in STEM [80] and software engineering [11]
suggest a need for automating the process of sketching and
preserving transient sketches such as whiteboard drawings
with appropriate tools. In similar activities such as annotating
documents, personal annotations undergo dramatic changes
such as significant substantiation and clarification when they
are shared on public platforms [47]. Digitization of the analog
pen-and-paper interface attempts to make the transformation
process smoother. While digital ink tools imitate the pen-and-
paper experience and provide more versatility and power, there
still exist gaps between the manual and digital experience of
sketching due to conflicting affordances of analog pen and
digital ink [64].

Given the lack on the prior work on this topic, this paper di-
rectly investigates the process of creating conceptual diagrams
using digital tools.

METHOD

Participants and recruitment
We conducted interviews with 18 participants (13 male, 5
female). Participants were recruited through posts on social
media, and our research group website. Of these, four par-
ticipants were university faculty, 10 were PhD students or
postdocs, one was a professional masters student, one was a
K-12 math instructor, one is an independent software devel-
oper, and one is an enterprise software engineer. Prospective
participants filled out a survey which allowed us to screen
participants for our interviews. We selected the interviewees
based on the following criteria: the interviewee (1) creates
conceptual diagrams on a frequent basis and (2) uses digital
diagramming tools to create these diagrams.

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 126 Page 3

http://paperjs.org/
https://helpx.adobe.com/illustrator/user-guide.html
http://aprt.us/

Domain Participant

Abstract algebra P1, P17
Category theory P4
Discrete mathematics P14
Computer graphics P16, P6, P10, P3
Algorithms P12
Topology P7
Human-computer interaction P13, P18
Programming language theory P11
Software engineering P9, P2
User interface design P5
Architecture P8
K-12 education P15

Table 1. Interview participants’ primary domains

Because we had more potential interviewees than we origi-
nally envisioned (64 in all), we used a saturation method [3] to
determine the number of participants. We conducted several
batches of interviews (with 2-3 interviews per batch consisting
of diverse participants), and did a preliminary analysis of the
transcripts from each batch. When the analysis stopped reveal-
ing new insights, we stopped interviewing more participants.

Semi-structured interviews
Interviews lasted between 30 and 80 minutes and were semi-
structured. Interviews were conducted either in person (7
participants) or online using Skype (11 participants.) We
encouraged participants to bring any digital and hand drawn
diagrams that they had previously created that they could share
with us. We also encouraged them to have a pen and paper (or
a whiteboard) available to draw during the interview.

Four of the authors are involved in the development of PEN-
ROSE [57, 84], a new diagramming tool. Our initial interview
questions were developed to inform PENROSE’s design. The
focus of the interview eventually broadened to participants’
past experience diagramming (using the critical incident tech-
nique [21]), tool preferences, and reuse practices. The full
interview protocol is included as supplementary material. Ex-
ample questions from our script are: (e.g. “What is the last
diagram you made?” and “What is the diagram you are most
proud of?”), accompanied by appropriate follow-up questions
and requests for participants to share diagrams under discus-
sion. Table 1 includes all the participants categorized by the
primary focus of their work.

Analysis
Interviews were video recorded and transcribed using either
human or machine transcription. The first two authors then
manually validated and corrected any transcription errors.

We employed thematic analysis methods [8] to analyze inter-
view transcripts. The first two authors began by conducting
an open coding session and discussed initial insights for ev-
ery batch of interviews. Then, following all interviews, the
authors discussed the codes and created a coding guide with
operationalized definitions of codes. Using the agreed coding

Figure 2. A good visual representation (b) of forces on a truck (a) is
easily understandable, whereas (c) loses essential information and (d) is
non-standard and harder to understand.

guide, one of the authors did a second phase of coding. While
conducting the second coding phase, the author also summa-
rized the transcripts using sticky notes containing highlights
of the interview sessions. All authors then reviewed both the
codebook with the sticky notes to further refine the set of
codes.

Finally, the authors analyzed the codes by clustering lower-
level codes during multiple interactive discussion sessions.
Through the higher-level clusters, a few themes with high
numbers of codes emerged, such as Reuse and Representation.
We present these themes and the resulting insights next.

RESULTS
In this section, we present the results from our analysis of
the interview data. The section is organized in terms of the
high-level themes that emerged from our analysis.

Representation finding
When illustrating a concept visually, a crucial step is to decide
how every abstract object will be represented graphically. For
example, Larkin and Simon, in their classic paper “Why a
Diagram is (Sometimes) Worth Ten Thousand Words,” chose
to represent forces with arrows in the diagram shown in Fig-
ure 2b [44]. This step, which we call representation finding,
is crucial to diagram effectiveness. If Larkin and Simon had
represented forces using concentric circles with different radii
instead of arrows (Figure 2c), the directionality of the forces
would be lost. If they had represented forces with chocolate
bars with different lengths (Figure 2d), the diagram would
have been inconsistent with other physics diagrams and the
extraneous detail would have distracted from the core purpose.

This process of representation finding usually preceded the
creation of any formal or informal diagrams. Participants
engaged in two representation finding activities: (1) seeking
and finding existing representations from prior work and (2)
creating novel representations.

Diagrammers seek existing representations from prior work
In many domains, there are well-established visual represen-
tations for abstract concepts and objects. Therefore, diagram-

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 126 Page 4

mers tended to look at existing diagrams for representations
when starting to create their representations:

“Sometimes I look for inspiration in other papers just to
know what kinds of standard people are using. Sometimes
there are some conventions that people actually use in my
field like how to represent a camera for instance. So you
kind of have to stick with these conventions.” (P3)

Diagrammers generate new representations to tell new stories
Other domains lack standardized representations and diagram-
mers creatively generate their own representations:

“The whole purpose of those diagrams [in my book] is to
make something that has never been seen before visually
obvious... Why didn’t anybody draw that picture before? I
have been taking something that almost seems completely
confusing or unimportant and having a picture that makes
you know what’s going on... is truly satisfying.” (P1)

When creating diagrams for explanatory purposes, diagram-
mers also carefully craft visual representations to ensure that
the diagram is intuitive and clear for their target audience. For
instance, P8 developed new representations to reduce visual
complexity:

“When a diagram has too many working elements, it be-
comes too hard for your brain to process it. If you can boil
it down to two main things interacting, that will make the
diagram much more intuitive to someone. It’s very much
about choosing the right colors, lines... putting the empha-
sis in the right place.” (P8)

Diagrammers use sketches to discover appropriate represen-

tations
Sketching plays an important role in generating new visual
representations or choosing among existing ones. For instance,
P8, P12, P5, P9, and P13 reported iterative processes of refin-
ing their visual representations as they sketch. For instance, P9
described the evolution of diagram sketches and the changes
of visual representations of the design of a complex camera-
supporter-projector system, also shown in Figure 3:

“At this stage, I don’t even know how these machines would
be connected, so there’s lines, but at this later stage I was
actually thinking about ‘Oh, how are we going to represent
these things and compute with them in practice?’ So I did
arrows. There’s also certainly increased complexity in the
beginning thing, I’m just looking at the situation of a single
camera projectors supporters system. Then here on the
next page I’m starting to look at different configurations of
multiple cameras and projectors.” (P9)

Choosing the right tools
When participants eventually chose to move to a digi-
tal medium, their choice of tool was systematic, if not
conscious. Specifically, we found participants’ preferred
either programming-language based (PL) tools or direct-
manipulation based (DM) ones. Below, we analyze the reasons
for their preferences.

People choose DM tools for faster feedback and global control
DM tools were often described as “easier” and thus have
lower barriers to entry when compared with PL tools. One
particularly common reason for choosing DM tools was the
need to place shapes in relations with other shapes, which is
difficult to do without immediate visual feedback.

“So I like [a DM tool] because it gives me this very fine con-
trol over how things are aligned and when they’re straight
up and down.” (P2)

Because of the synchronized visual preview, DM tools provide
better support for global control over diagram layout, i.e. the
relationships among graphical primitives. Diagrammers used
DM tools similar to how they used pen and paper, to offload
their working memory [44], but with the additional benefits
provided by interactions supported by the tools:

“I’m trying to draw things down on the papers [or DM tools]
because my head is getting crowded and I need to be able
to keep track of everything on [digital] paper and be able
to interact with it the same way I would in my head.” (P7)

People choose programming languages for better abstraction

and local control
Comparing to the easy global control provided by DM tools,
PL tools make local control easier: they let users control local
placements of shapes by specifying exact pixel coordinates:

“I want this [a shape] to be exactly a hundred pixels... be-
cause there’s definitely times where I want to get this right
to this point and it’s hard to do that with the mouse.” (P15)

Global layout of diagrams can be specified more precisely
using PL tools, but requires more advanced programming
skills and, as discussed, more time commitment:

“If it’s something where the relationships among the things
you want to specify in a precise way, then it’s a lot easier,
if you know how to program, to introduce a programming
language where you can specify exactly the relationships
you want, how you want them to change, and so forth.” (P1)

Programming languages provide affordances to create abstrac-
tions and automate the diagramming process:

“Once you have made a visualization [using PL tools], if
you want to tweak things about it, you can. Just put what
you do into a script, add some parameters, and you could
repeatedly get the same visualization with variations... It
will generate the thing automatically, you don’t have to
create a whole picture by hand again.” (P1)

The complexity of languages, however, incurs a higher up-
front cost and steep learning curve, making more diagram-
mers without programming background reluctant to commit to
them. Another downside of PL tools is that they often require
compile-and-run cycles and hence delayed feedback:

“There’s a long learning curve on [a PL tool] and then
it’s slow. It’s a lot of typing and a lot of iterative–‘I type
something and I see what it looks like’. So there’s a lot of
delays in modifying [the diagram].” (P15)

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 126 Page 5

(a) An initial sketch represents connectivity as line segments. (b) A later sketch represent connectivity as arrows.

Figure 3. P9 made sketches to explain projector and camera calibration. The complexity of these sketches increased and visual representations evolve
over time.

“I’m willing to put in the effort, but it’s like 20% of the time is
that, and like 80% of the time is fighting with LATEX.” (P11)

Advanced diagrammers use PL tools to automate their dia-

gramming workflows
In some cases, diagrammers find the need to create families
of similar diagrams for the use of, for instance, writing a text-
book or a problem set. A small number of our interviewees
automated their diagramming workflow extensively by lever-
aging the abstraction affordances of PL tools. One automation
pattern is to parameterize complex diagrams and generate mul-
tiple instances with variations to explore design alternatives
and populate diagram collections:

“If I invest the time upfront to just write it, parameterized
by, and then I do the diagram in terms of n and k. And then
later I realize that, ‘Aw, n = 15 and k = 4 is just a mess!’
Okay, I go to the top of the file and I set n = 12 and k = 3
and I re-render it and it looks like this, and I go, ‘That’s
what I want.’ If I’m not sure, okay, let’s try n = 10, try that.
You can just make a new diagram in 15 seconds instead of
four hours, but they also demand more time and skills up
front. If I’m just going to do one diagram, it’s not worth it.”
(P1)

Another pattern is creating ad hoc, embedded domain-specific
languages that allow specification of diagrams at a higher
level:

“I have learned a style that is highly idiomatic and not
something that I could teach someone else... you look at the
sort of syntactic objects that you’re going to work with in a
certain proof theory, and you define the macros at the top
level.” (P11)

As commented by P1 and P11 above, the automation requires
a high upfront cost and advanced skill sets, and only advanced
diagrammers invested in the skills and time commitment to do
so.

Reusing elements from earlier diagrams

Diagrammers backtrack frequently and informally track prior

versions
Diagrammers were iterative even in the formal diagramming
stage, which involves frequent backtracking behaviors. There-
fore, keeping track of version history becomes an essential
task for diagrammers.

In the case of DM tools, however, versioning can be challeng-
ing in many existing tools, due to the lack of textual storage
formats. As a result, ad hoc solutions are again created to com-
pensate for this limitation such as keeping multiple versions
of the diagram on the same canvas, as illustrated in Figure 4
and described by P5:

“I ... duplicate each [art board], change something about
that, and take it out again. That’s really helpful not only to
present the overall trajectory of the process, but then you
can go back and reference a previous state without having
to look through the undo history and destroy all of your
redos. I [like to] branch out fractally with different areas
that are relevant to me.” (P5)

In theory, standard version control systems such as git [76]
make it easy to track versions with PL tools. However, even
with their textual file formats, versioning can still be challeng-
ing for PL tools because textual representations of diagrams
can be too low-level to be human readable. As a result, P6
tracks prior versions without using standard version control
systems:

“I rely either on Dropbox to store different images or I have
my own custom-made back-up system that keeps hard copies
of things... I have a separate script that every day pulls all of
my folders and keeps copies of them if there is any change.”
(P6)

Diagrammers organize reuse libraries by representation
The most common form of library we saw diagrammers main-
tain was a “cheat sheet”. Cheat sheets are configuration files
that contain low-level parameters such as line-weight settings

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 126 Page 6

Figure 4. P13 manually tracks versions of a diagram in Illustrator using multiple canvases.

=== COLORS ===
* Orange
Base: #f7883c
Dark: #000 @ 15% (overlay)
Darker: #000 @ 30% (overlay)
Light: #fff @ 20% (overlay)
Lighter: #fff @ 40% (overlay)
=== STROKES ===
Main (silhouette only): #000 2pt thickness (solid)
Secondary: #000 1pt thickness (solid)
Tertiary: #000 @ 50% (overlay) 1pt thickness
Behind: #000 @ 1pt thickness (dashed: 6pt dash, 7pt gap,
 round cap, align to corners)
=== FONT ===
Base: Linux Libertine (add with TikZ directly in TeX)
Size: 11pt

r p

Figure 5. P3 uses a cheat sheet to track frequently used style attributes.

and hexadecimal strings of colors (P3, P6, P13). Diagrammers
used cheat sheets to reduce stylistic inconsistencies and to sim-
plify the repetitive, manual tasks in the diagramming process
with cheat sheets. For instance, one participant said:

“Usually I have this little txt file where I basically remem-
ber the color so I have the color codes for primary and
secondary [objects]... I saved the [line] width as well for
primary secondary [objects], and that’s kind of like my
cheat sheet that I reuse.” (P3)

This is one area where tool support was mostly lacking. For
instance, participants often took notes manually (sometimes
these notes were handwritten.)

More advanced diagrammers maintained collections of ex-
isting diagrams or diagram components, organized by repre-
sentation. For instance, one participant keeps a document of
previous visualizations, as shown in Figure 6:

“I keep a document, that is almost all the TikZ diagrams I’ve
ever had to because I find that they helped me think about
how to represent diagrams for new situations.” (P7)

Another participant collects commonly used diagram compo-
nents in a personal library:

“So over the time I’ve settled on specific representations for
the camera and the light source, I keep copies of them. I
have my own small library of things.” (P6)

IMPLICATIONS: NATURAL DIAGRAMMING
The results discussed above suggest unique strengths and
weaknesses of existing PL and DM diagramming tools. This
section offers some possibilities to combine the strengths of
PL and DM tools and create more intuitive and efficient next-
generation tools. Just as previous work advocated for creat-
ing programming tools “for people to express their ideas in
the same way they think about them” [56] as an opportunity
for natural programming, we advocate for creating diagram-
ming tools for natural diagramming. Natural diagramming
presents four distinct opportunities to leverage the strengths
while alleviating the weaknesses of existing tools: exploration
support, representation salience, live engagement, and vocabu-
lary correspondence. We end the description of each of these
natural diagramming opportunities by highlighting existing
techniques that may be further developed to achieve it.

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 126 Page 7

For any thrackle we can create a graph where the vertices represent the
convex sets and there is an edge between the vertices if the two convex sets
intersect. For example:

Figure 1: A thrackle and its reverse graph color indicated W points

since ever convex set must intersect exactly once the ending reverse graph
will be the complete graph on m vertices, Km.

The intersection of convex sets is a symmetric relation and so any W point
will be a sub-complete graph. Therefore the decomposition of the complete
graph into sub-graphs is the number of W points which has to be larger than
than m.

Figure 2: Examples of tight thrackles for Conjecture 0.1

x1

�6 �4 �2 0 2 4 6

A B A

A B A B

a
1

23

4

56

M

F V

D

a1

a2

a3

p1 p2

5

4

7

8

3

5

a1

a2a3

p1 p2

p1

p2p3

2 2

2

q1

q2q3

1

11

1

1

2

2

3

3

4

4

5

5

1

1

2

2

3

3

4

4

5

5

6

6

n volFG((4,3,2,1),n)(1) Graph Partition

5 107520 1 2 3 4 5 6

1

1

2

2

3

3

4

4

5

5

6 26580 1 2 3 4 5 6 7

1

1

2

2

3

3

4

4

5

5

6

6

7 15120 1 2 3 4 5 6 7 8

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8 12600 1 2 3 4 5 6 7 8 9

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9 12600 1 2 3 4 5 6 7 8 9 10

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10 12600 1 2 3 4 5 6 7 8 9 10 11

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

p
u

Figure 6. P7 organizes all previously made TikZ diagrams in a single document.

Exploration support
Exploration pervades the diagramming process for making
conceptual diagrams, from choosing representation to deter-
mining stylistic details. We characterize two types of ex-
ploratory activities by adopting terms from Goel [23]: (a)
Lateral transformations involve ideation and exploration at
the high-level to broaden the design space, e.g. finding the
appropriate visual representation for forces in Figure 2. (b)
Vertical transformations are more detailed refinements to a
pre-determined visual representation, such as deciding the
arrowhead style in Figure 2b.

Sketching is an important, if not necessary, part of the design
process [10]. Our participants produced physical sketches to
explore design alternatives before transitioning to digital tools,
which are perceived as a medium of higher commitment. They
performed this type of exploration by looking at prior work
and multiple alternatives laterally. Early informal sketches
naturally affords lateral transformations [23].

Diagrammers also attempt to leverage precision, automation,
and abstraction afforded by digital tools. After the visual rep-
resentation stabilizes, they move to digital tools and refine this
determinate representation, i.e. vertically refine their design.
Unfortunately, existing tools do not provide sufficient flexibil-
ity to support even small vertical changes. Whereas DM tools
require significant manual efforts to propagate local changes,
PL tools require a high upfront cost to create abstractions that
reduce future repetition. As a result, our participants described
various ad hoc workarounds to perform common activities
for exploration such as backtracking, versioning, and reuse in
both PL and DM tools.

In essence, a gap exists between drafting and crafting, a de-
sign dilemma that has plagued other sketching tools (such as
digital pens) [64]. Solving this dilemma requires tools that
continuously support diagrammers to explore lateral and verti-
cal changes, allowing more fluidity to make, track, and revert
changes.

One solution to the problem of exploration and change man-
agement can be seen in tools for exploratory programming.
Exploratory Programming (EP) characterizes a practice of ex-

perimenting and prototyping adopted by programmers across
a wide range of domains [67, 39]. Data scientists reuse and it-
erate on small snippets of scripts to analyze data exploratively.
VARIOLITE [38] support local versioning with “variant boxes”
around regions of code. Software engineers often backtrack
by manually deleting or re-typing code when developing soft-
ware [85]. Selective undo techniques allow complex backtrack-
ing in code editing [54], which was also shown to be effective
for painting applications [55].

Some systems also show opportunities for automatic verti-
cal refinement. For instance, to support the transition from
freehand sketches to final UI implementation, SILK recog-
nizes hand-drawn shapes and translates them to real UI com-
ponents [43]. DREAMSKETCH generates 3D models from
sketches [37]. Sketches for conceptual diagrams, however, can
often be intentionally ambiguous and unstructured, making
recognition, beautification, and generation of reusable diagram
components challenging [71].

Finally, in addition to better support for history management,
another approach may be to reduce unnecessary changes
through improved abstractions. Program synthesis can be used
to generate reusable functions from examples of lower-level in-
teractions with a potentially non-programmatic interface [27].
SKETCH-N-SKETCH is a vector drawing tool with synchro-
nized code and graphical views of the same drawing [31]. It
synthesizes reusable functions from direct manipulation of ob-
jects in the graphical view and thereby enables users to avoid
repetition. Ellis et al. [16] synthesize imperative programs
from hand-drawn sketches. Currently, synthesizing high-level
abstractions and surfacing them in a non-obstructive, mean-
ingful manner are still open problems for future conceptual
diagramming tools.

Representation salience
Constructing and interpreting representations are crucial skills
for learning new concepts and developing domain expertise [2].
Many of our participants track prior representations, curate
reuse libraries, search for ones created by others, and inven-
tively create new ones in their representation finding phase.
This suggests an opportunity for natural diagramming tools

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 126 Page 8

that support representation salience, treating visual represen-
tations as first-class entities and providing operations to easily
interact with them.

Bret Victor uses the analogy of climbing “up” (abstraction)
and “down” (concretization) the ladder of abstraction to char-
acterize the process of understanding complex systems using
visual representations [78]. Abstraction and parametrization
of diagrams allows fast generation of families of similar dia-
grams, which can be used in multiple places or serve as a set
of design alternatives. In existing tools without easy access
to abstraction constructs, generating design alternatives can
be a time-consuming manual process. Our participants use
existing abstraction constructs such as macros and functions to
encode representations, but they tend to be highly personalized
and brittle solutions. As a result, these custom abstractions
are rarely scalable or composable, as one frequent TikZ user
said “macros are terrible, [I make macros that are] 20 or
30 braces deep... it’s just hard to write and edit.” (P11) In
addition, these poor abstractions still require significant time
investment and force diagrammers to concretize concepts man-
ually instead. Consequently, diagrammers’ representational
encodings are scattered in manually curated personal libraries,
online examples, and cheatsheets of lower-level elements.

For visual representation to be salient, both the underlying
structures and mappings to visual elements need to be encoded
in the diagramming system explicitly. Further, these encodings
must be specified with manageable, scalable, and composable
abstraction constructs that allow diagrammers to move “up”
and “down” the ladder of abstraction easily.

The management of visual representations at different lev-
els of abstraction can be seen in many fields. For instance,
Gross [25] tackles the problem of the fixed low-level represen-
tations of computer-aided design (CAD) tool by supporting
gradual transition from sketches to more structured diagrams
and suggesting concrete representations given early concep-
tual sketches. Data visualization tools such as Dashiki [52]
and Draco [53] can manage of multiple representations of the
underlying data.

The lack of representation salience often manifest in highly
viscous diagramming tools that operate on low-level prim-
itives and lose deeper semantics of graphical components.
To solve this problem in data visualization, the grammar of
graphics [81] formalizes a rich set of operations to transform
data into visual components. For mathematical diagrams,
PENROSE [57] includes two domain-specific languages that
decouple visual representations from declaration of abstract
objects and encode visual representations by pattern-matching
on the objects and declaring visual elements. Apart from
these domain-specific solutions above, however, conceptual
diagramming tools still lack a general and accessible approach
to specify problem domains and the visual representations
thereof.

Live Engagement
Hutchins et al. introduce direct engagement, “the qualitative
feeling that one is directly engaged with control of the objects,”
as an important criterion for effective interfaces [35]. Our

results show that direct engagement for diagramming can be
perceived differently depending on the kinds of interfaces and
the sense of control they afford, i.e. the sense of agency over
essential operations in conceptual diagramming [46]. DM tool
design affords continuous representations of objects and imme-
diate visibility of incremental changes [68]. As a result, they
naturally afford a sense of global control over the global rear-
rangement of diagram layout. Yet, local control over precise
specification of visual properties and creation of high-level
abstractions is still challenging in direct-manipulation tools.
On the other hand, while these same operations are directly
supported in PL tools, our participants reported frustration
with their high latency and long compile-and-run cycles. Our
results suggest immediate visual feedback (or liveness [72])
is also essential for abstract operations. In other words, the
sense of control and direct engagement is diffused among DM
and PL tools.

Traditional direct manipulation interfaces can be augmented
by novel interaction and programming techniques such as pro-
grammatic brushes [36], programming by example [26] and
programming by manipulation [32]. Bidirectional program-
ming [12] proposes to combine direct manipulation and textual
programming by surfacing both direct manipulation and text-
based interfaces and synchronizes and synchronizing changes
in both directions: (i) from the program text to the output
(liveness) and (ii) from the output to the program text (direct
engagement). These techniques, although currently limited
to narrower domains, provide promising directions towards
bridging the gap between PL and DM tools.

There have been also significant advances in programming
languages to support liveness. Live programming techniques
can provide responsive and continuous feedback on program
changes. The methodology has been increasingly adopted
in computer science education, web development, and tradi-
tional programming environments [50, 33, 62]. Tanimoto [72]
proposes four levels of liveness with the top level featuring
“stream-driven updates” and “informative, significant, respon-
sive and live” visual representations of programs’ dynamic
behaviors. Techniques such as incremental compilation and
type inference [51] and typed holes [59] allow fast compi-
lation and facilitate liveness of programming environments.
However, many live programming systems only offer one-way
updates from the program to its output visual representation,
inhibiting the opportunities for direct interactions with the
visuals.

Vocabulary correspondence
Conceptual diagrams are made of “abstract and topologi-
cal” [20] shapes that are mapped from domain objects in the
content model [63]. In Figure 2b, the concept of two counter-
acting forces (domain objects) is mapped to two arrows, but
the exact styling and lengths of the arrows do not change the
meaning of the diagram. As a result, users’ vocabularies for
conceptual diagramming are often abstract, topological, and
domain-specific. Therefore, there is an opportunity for natural
diagramming tools that support vocabulary correspondence
by having a grammar or an interface that directly maps to
users’ vocabulary for diagramming.

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 126 Page 9

As shown in our results, diagrammers define new abstractions
to both automate and naturalize their diagramming process.
More advanced diagrammers create abstractions to quickly
generate new diagram instances and fit their mental models,
but, even for advanced diagrammers, abstractions are brittle
and often not share-able, due to the lack of tool support. In
addition, many participants described diagrams in terms of
relative, high-level relationships such as “smaller”/“bigger”
and “overlaping”/“non-overlapping”. But the tools they use
tend to operate on absolute units and do not provide support
for specifying such relationships. One participant shared a
vision of an ideal tool:

“The best tool... would have fairly high level primitives. I
might say ‘Okay, I want it to be symmetric in this way. I
want this thing always to be attached to that.’ I want to be
able to define my own higher level primitives.” (P2)

In other words, large semantic and articulatory distances [35]
still exist between interaction metaphors and diagrammers’
vocabulary, creating an opportunity improve the closeness
of mapping [24] while maintaining users’ control and the
expressiveness of diagramming tools.

One opportunity to do so is allow users to introduce their own
vocabulary to the tool, for instance, through domain-specific
languages (DSL). DSLs provide focused expressive power
within specific problem domains at the cost of generality [77].
For instance, domain-specific diagramming systems such as
GraphViz allow succinct, high-level specification of diagrams
and leverage domain knowledge to solve for diagram layouts
algorithmically [17]. So far, DSLs have been most useful areas
such as graph visualization, but they may prove to be useful
elsewhere too. To allow end-users to introduce their own
DSLs, language workbenches may be a viable implementation
route. These workbenches allow efficient definition, reuse, and
composition of DSLs [18], but much work remains, as existing
language workbenches such as MPS [79] are still complex to
learn for end-users like many of our participants.

Another way to model abstract and topological relationships
is using high-level constraints, an idea that has existed since
the invention of SketchPad [70]. Constraint-based systems are
extensively used in Computer-Aided Design (CAD) tools [69].
CAD users commonly use constraints in parametric drawing,
exploring different configurations of complex shapes. Au-
tomatic formatting of documents, digital drawings, and web
pages are often modeled as constraints and can be optimized by
solvers [34, 60]. To further simplify the process of constraint
specification, some systems allow visual interactions with con-
straints [32, 22] while others intelligently infer constraints by
examples [42]. By offloading the burden of low-level specifi-
cation to constraint solvers, diagrammers often lose control of
diagram elements, which poses usability challenges to future
diagramming tools.

CONCLUSION AND FUTURE WORK
Conceptual diagrams are essential for understanding concepts,
communicating ideas, and improving instructions effectively
in many fields. This paper provides the first empirical study
of how domain experts create conceptual diagrams.

Our results demonstrate representation finding as a vital step in
the diagramming process and the role that sketches play in this
step. However, due to limitations of current tools, notably the
trade-offs between direct manipulation tools and programming
languages, reusing representations is still challenging. As a
result, diagrammers creatively circumvent these limitations
by employing a set of ad hoc techniques to reuse diagram
components and to scale up diagram production.

Based on our results, we introduce the concept of natural di-
agramming and four opportunities for natural diagramming
support: exploration support, representation salience, live en-
gagement, and vocabulary correspondence. For each of them,
we discussed how recent advances from various research com-
munities can help improve existing tools and design future
tools.

Future work can leverage the substantial amount of conceptual
diagrams that exist in the wild and perform large-scale analysis
to gain a more quantitative understanding of existing diagrams.
Similarly, it is possible to leverage the large number of current
diagramming tools, some of which support a subset of natu-
ral diagramming. In particular, it may be possible to isolate
and quantify the benefits of each opportunity of natural dia-
gramming introduced in this paper by analysing existing tools.
A deeper, more systematic analysis of the relationships and
trade-offs among the four natural diagramming opportunities
may further inform tool designers to make design decisions
more critically. Further, this study does not focus on collabo-
ration support for conceptual diagramming. Future work may
explore how to support, for instance, vocabulary correspon-
dence when multiple diagrammers from diverse backgrounds
collaborate on a single conceptual diagram.

Natural diagramming embodies our vision for future diagram-
ming tools—tools that seamlessly and naturally translate di-
agrammers’ high-level ideas to beautiful and illustrative dia-
grams. This paper advances this goal by articulating a concrete
vision for systems designers to create more effective diagram-
ming tools.

ACKNOWLEDGMENTS
The questions raised in this study were inspired by many
discussions with the Penrose team, especially with Keenan
Crane and Jonathan Aldrich. We thank our participants for
their helpful insight and for being willing to share their visu-
alization work. We greatly appreciate Robert Ochshorn and
Reduct for transcribing our interviews. We also thank Brad
Myers, Michael Hilton, Mary Beth Kery, Adam Perer, Sarah
Chasins, and Tatiana Vlahovic for their helpful feedback on
our work. This material is based on work supported by the Na-
tional Science Foundation under awards #1560137, #1852260,
#1910264, and by the U.S. Department of Defense. Any opin-
ions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily
reflect the views of the funders.

REFERENCES
[1] 2019. Gallary of Concept Visualization.

http://conceptviz.github.io/. (2019). Accessed:
2019-09-18.

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 126 Page 10

http://conceptviz.github.io/

[2] Shaaron Ainsworth, Vaughan Prain, and Russell Tytler.
2011. Drawing to learn in science. Science 333, 6046
(2011), 1096–1097.

[3] H Russell Bernard and Harvey Russell Bernard. 2013.
Social research methods: Qualitative and quantitative
approaches. Sage.

[4] Eliza Bobek and Barbara Tversky. 2016a. Creating
visual explanations improves learning. Cognitive
Research: Principles and Implications 1, 1 (2016), 27.

[5] Eliza Bobek and Barbara Tversky. 2016b. Creating
visual explanations improves learning. Cognitive
Research: Principles and Implications 1, 1 (07 Dec
2016), 27. DOI:
http://dx.doi.org/10.1186/s41235-016-0031-6

[6] Alan Borning. 1981. The Programming Language
Aspects of ThingLab, a Constraint-Oriented Simulation
Laboratory. ACM Trans. Program. Lang. Syst. 3, 4 (Oct.
1981), 353–387. DOI:
http://dx.doi.org/10.1145/357146.357147

[7] John C. Bowman and Andy Hammerlindl. 2008.
Asymptote: A Vector Graphics Language. TUGboat:
The Communications of the TEX Users Group 29, 2
(2008), 288–294.

[8] Virginia Braun and Victoria Clarke. 2006. Using
thematic analysis in psychology. Qualitative research in
psychology 3, 2 (2006), 77–101.

[9] Bret Victor. 2013. Drawing Dynamic Visualizations.
(2013). https://vimeo.com/66085662 Stanford HCI
Seminar.

[10] Bill Buxton. 2010. Sketching user experiences: getting
the design right and the right design. Morgan kaufmann.

[11] Mauro Cherubini, Gina Venolia, Rob DeLine, and
Andrew J. Ko. 2007. Let’s Go to the Whiteboard: How
and Why Software Developers Use Drawings. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’07). ACM, New
York, NY, USA, 557–566. DOI:
http://dx.doi.org/10.1145/1240624.1240714

[12] Ravi Chugh. 2016. Prodirect manipulation: bidirectional
programming for the masses. In Proceedings of the 38th
International Conference on Software Engineering
Companion. ACM, 781–784.

[13] Ruth C Clark and Richard E Mayer. 2016. E-learning
and the science of instruction: Proven guidelines for
consumers and designers of multimedia learning. John
Wiley & Sons.

[14] Fehmi Dogan and Nancy J Nersessian. 2002.
Conceptual diagrams: representing ideas in design. In
International Conference on Theory and Application of
Diagrams. Springer, 353–355.

[15] Elijah Meeks. 2018. Third Wave Data Visualization.
(2018). https://youtu.be/itChfcTx7ao Tapestry
Conference keynote.

[16] Kevin Ellis, Daniel Ritchie, Armando Solar-Lezama,
and Josh Tenenbaum. 2018. Learning to Infer Graphics
Programs from Hand-Drawn Images. In Advances in
Neural Information Processing Systems 31, S. Bengio,
H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett (Eds.). Curran
Associates, Inc., 6059–6068.

[17] John Ellson, Emden R Gansner, Eleftherios Koutsofios,
Stephen C North, and Gordon Woodhull. 2004.
Graphviz and dynagraph–static and dynamic graph
drawing tools. In Graph drawing software. Springer,
127–148.

[18] Sebastian Erdweg, Tijs van der Storm, Markus Völter,
Meinte Boersma, Remi Bosman, William R. Cook,
Albert Gerritsen, Angelo Hulshout, Steven Kelly, Alex
Loh, Gabriël D. P. Konat, Pedro J. Molina, Martin
Palatnik, Risto Pohjonen, Eugen Schindler, Klemens
Schindler, Riccardo Solmi, Vlad A. Vergu, Eelco Visser,
Kevin van der Vlist, Guido H. Wachsmuth, and Jimi van
der Woning. 2013. The State of the Art in Language
Workbenches. In Software Language Engineering,
David Hutchison, Takeo Kanade, Josef Kittler, Jon M.
Kleinberg, Friedemann Mattern, John C. Mitchell, Moni
Naor, Oscar Nierstrasz, C. Pandu Rangan, Bernhard
Steffen, Madhu Sudan, Demetri Terzopoulos, Doug
Tygar, Moshe Y. Vardi, Gerhard Weikum, Martin Erwig,
Richard F. Paige, and Eric Van Wyk (Eds.). Vol. 8225.
Springer International Publishing, Cham, 197–217. DOI:
http://dx.doi.org/10.1007/978-3-319-02654-1_11

[19] Stephen M Ervin. 1990a. Designing with diagrams: a
role for computing in design education and exploration.
The Electronic Design Studio, The MIT Press,
Cambridge, Massachusetts (1990), 107–122.

[20] Stephen M. Ervin. 1990b. Designing with Diagrams: A
Role for Computing in Design Education and
Exploration. In The Electronic Design Studio, The MIT
Press, Cambridge, Massachusetts. The MIT Press,
Cambridge, Massachusetts, 107–122.

[21] John C Flanagan. 1954. The critical incident technique.
Psychological bulletin 51, 4 (1954), 327.

[22] Michael Gleicher and Andrew Witkin. 1994. Drawing
with Constraints. Vis. Comput. 11, 1 (Jan. 1994), 39–51.
DOI:http://dx.doi.org/10.1007/BF01900698

[23] Vinod Goel. 1995. Sketches of thought. MIt Press.

[24] T. R. G. Green and M. Petre. 1996. Usability Analysis of
Visual Programming Environments: A ‘Cognitive
Dimensions’ Framework. Journal of Visual Languages
& Computing 7, 2 (June 1996), 131–174. DOI:
http://dx.doi.org/10.1006/jvlc.1996.0009

[25] Mark D Gross. 1996. The electronic cocktail napkin–a
computational environment for working with design
diagrams. Design studies 17, 1 (1996), 53–69.

[26] Sumit Gulwani, William R Harris, and Rishabh Singh.
2012. Spreadsheet data manipulation using examples.
Commun. ACM 55, 8 (2012), 97–105.

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 126 Page 11

http://dx.doi.org/10.1186/s41235-016-0031-6
http://dx.doi.org/10.1145/357146.357147
https://vimeo.com/66085662
http://dx.doi.org/10.1145/1240624.1240714
https://youtu.be/itChfcTx7ao
http://dx.doi.org/10.1007/978-3-319-02654-1_11
http://dx.doi.org/10.1007/BF01900698
http://dx.doi.org/10.1006/jvlc.1996.0009

[27] Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh.
2017. Program Synthesis. Foundations and Trends® in
Programming Languages 4, 1-2 (July 2017), 1–119.
DOI:http://dx.doi.org/10.1561/2500000010

[28] Pat Hanrahan. 2009. Systems of thought. EuroVis 2009
keynote address (2009), 10–12.

[29] Robert L Harris. 2000. Information graphics: A
comprehensive illustrated reference. Oxford University
Press, Chapter Conceptual diagram, 100.

[30] Mary Hegarty and Maria Kozhevnikov. 1999. Types of
Visual–Spatial Representations and Mathematical
Problem Solving. Journal of Educational Psychology 91,
4 (1999), 684–689. DOI:
http://dx.doi.org/10.1037/0022-0663.91.4.684

[31] Brian Hempel and Ravi Chugh. 2016. Semi-Automated
SVG Programming via Direct Manipulation. In
Proceedings of the 29th Annual Symposium on User
Interface Software and Technology (UIST ’16). ACM,
New York, NY, USA, 379–390. DOI:
http://dx.doi.org/10.1145/2984511.2984575

[32] Thibaud Hottelier, Ras Bodik, and Kimiko Ryokai.
2014. Programming by Manipulation for Layout. In
Proceedings of the 27th Annual ACM Symposium on
User Interface Software and Technology (UIST ’14).
ACM, New York, NY, USA, 231–241. DOI:
http://dx.doi.org/10.1145/2642918.2647378

[33] Christopher D Hundhausen and Jonathan L Brown.
2007. What You See Is What You Code: A “live”
algorithm development and visualization environment
for novice learners. Journal of Visual Languages &
Computing 18, 1 (2007), 22–47.

[34] Nathan Hurst, Wilmot Li, and Kim Marriott. 2009.
Review of automatic document formatting. In
Proceedings of the 9th ACM symposium on Document
engineering. ACM, 99–108.

[35] Edwin L Hutchins, James D Hollan, and Donald A
Norman. 1985. Direct manipulation interfaces.
Human-computer interaction 1, 4 (1985), 311–338.

[36] Jennifer Jacobs, Joel Brandt, Radomír Mech, and
Mitchel Resnick. 2018. Extending manual drawing
practices with artist-centric programming tools. In
Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems. ACM, 590.

[37] Rubaiat Habib Kazi, Tovi Grossman, Hyunmin Cheong,
Ali Hashemi, and George W Fitzmaurice. 2017.
DreamSketch: Early Stage 3D Design Explorations with
Sketching and Generative Design.. In UIST. 401–414.

[38] Mary Beth Kery, Amber Horvath, and Brad Myers.
2017. Variolite: Supporting Exploratory Programming
by Data Scientists. In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems
(CHI ’17). ACM, New York, NY, USA, 1265–1276.
DOI:http://dx.doi.org/10.1145/3025453.3025626

[39] Mary Beth Kery and Brad A Myers. 2017. Exploring
exploratory programming. In 2017 IEEE Symposium on
Visual Languages and Human-Centric Computing
(VL/HCC). IEEE, 25–29.

[40] Kenneth R. Koedinger. 1992. Emergent Properties and
Structural Constraints: Advantages of Diagrammatic
Representations for Reasoning and Learning. In Proc.
AAAI Spring Symposium on Reasoning with
Diagrammatic Representations. 154–169.

[41] David R Krathwohl and Lorin W Anderson. 2009. A
taxonomy for learning, teaching, and assessing: A
revision of Bloom’s taxonomy of educational objectives.
Longman.

[42] David Kurlander and Steven Feiner. 1993. Inferring
Constraints from Multiple Snapshots. ACM Trans.
Graph. 12, 4 (Oct. 1993), 277–304. DOI:
http://dx.doi.org/10.1145/159730.159731

[43] James A Landay and Brad A Myers. 1994. Interactive
sketching for the early stages of user interface design.
Technical Report. CARNEGIE-MELLON UNIV
PITTSBURGH PA DEPT OF COMPUTER SCIENCE.

[44] Jill H Larkin and Herbert A Simon. 1987. Why a
diagram is (sometimes) worth ten thousand words.
Cognitive science 11, 1 (1987), 65–100.

[45] P. Lee, J. D. West, and B. Howe. 2018. Viziometrics:
Analyzing Visual Information in the Scientific Literature.
IEEE Transactions on Big Data 4, 1 (March 2018),
117–129. DOI:
http://dx.doi.org/10.1109/TBDATA.2017.2689038

[46] Hannah Limerick, David Coyle, and James W. Moore.
2014. The Experience of Agency in Human-Computer
Interactions: A Review. Frontiers in Human
Neuroscience 8 (2014). DOI:
http://dx.doi.org/10.3389/fnhum.2014.00643

[47] Catherine C Marshall and AJ Brush. 2004. Exploring the
relationship between personal and public annotations. In
Proceedings of the 4th ACM/IEEE-CS joint conference
on Digital libraries. ACM, 349–357.

[48] Richard E. Mayer. 2002. Multimedia Learning. In
Psychology of Learning and Motivation. Vol. 41.
Academic Press, 85–139. DOI:
http://dx.doi.org/10.1016/S0079-7421(02)80005-6

[49] Richard E Mayer. 2003. The promise of multimedia
learning: using the same instructional design methods
across different media. Learning and instruction 13, 2
(2003), 125–139.

[50] Sean McDirmid. 2007a. Living It Up with a Live
Programming Language. In Proceedings of the 22Nd
Annual ACM SIGPLAN Conference on Object-oriented
Programming Systems and Applications (OOPSLA ’07).
ACM, New York, NY, USA, 623–638. DOI:
http://dx.doi.org/10.1145/1297027.1297073

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 126 Page 12

http://dx.doi.org/10.1561/2500000010
http://dx.doi.org/10.1037/0022-0663.91.4.684
http://dx.doi.org/10.1145/2984511.2984575
http://dx.doi.org/10.1145/2642918.2647378
http://dx.doi.org/10.1145/3025453.3025626
http://dx.doi.org/10.1145/159730.159731
http://dx.doi.org/10.1109/TBDATA.2017.2689038
http://dx.doi.org/10.3389/fnhum.2014.00643
http://dx.doi.org/10.1016/S0079-7421(02)80005-6
http://dx.doi.org/10.1145/1297027.1297073

[51] Sean McDirmid. 2007b. Living It Up with a Live
Programming Language. In Proceedings of the 22nd
Annual ACM SIGPLAN Conference on Object-Oriented
Programming Systems and Applications (OOPSLA ’07).
ACM, New York, NY, USA, 623–638. DOI:
http://dx.doi.org/10.1145/1297027.1297073

[52] M. McKeon. 2009. Harnessing the Information
Ecosystem with Wiki-Based Visualization Dashboards.
IEEE Transactions on Visualization and Computer
Graphics 15, 6 (Nov. 2009), 1081–1088. DOI:
http://dx.doi.org/10.1109/TVCG.2009.148

[53] Dominik Moritz, Chenglong Wang, Gregory Nelson,
Halden Lin, Adam M. Smith, Bill Howe, and Jeffrey
Heer. 2019. Formalizing Visualization Design
Knowledge as Constraints: Actionable and Extensible
Models in Draco. IEEE Trans. Visualization & Comp.
Graphics (Proc. InfoVis) (2019).
http://idl.cs.washington.edu/papers/draco

[54] Brad A. Myers, Ashley Lai, Tam Minh Le, YoungSeok
Yoon, Andrew Faulring, and Joel Brandt. 2015a.
Selective Undo Support for Painting Applications. In
Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems (CHI ’15). ACM,
New York, NY, USA, 4227–4236. DOI:
http://dx.doi.org/10.1145/2702123.2702543

[55] Brad A. Myers, Ashley Lai, Tam Minh Le, YoungSeok
Yoon, Andrew Faulring, and Joel Brandt. 2015b.
Selective Undo Support for Painting Applications. In
Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems (CHI ’15). ACM,
New York, NY, USA, 4227–4236. DOI:
http://dx.doi.org/10.1145/2702123.2702543

[56] Brad A Myers, John F Pane, and Amy Ko. 2004. Natural
programming languages and environments. Commun.
ACM 47, 9 (2004), 47–52.

[57] Wode Ni, Katherine Ye, Joshua Sunshine, Jonathan
Aldrich, and Keenan Crane. 2017. Substance and Style:
domain-specific languages for mathematical diagrams.
In Domain-Specific Language Design and
Implementation (DSLDI’17).

[58] Christopher Olah. 2015. Understanding LSTM
Networks. (2015). http:
//colah.github.io/posts/2015-08-Understanding-LSTMs/

Accessed: 2019-09-18.
[59] Cyrus Omar, Ian Voysey, Ravi Chugh, and Matthew A

Hammer. 2019. Live functional programming with
typed holes. Proceedings of the ACM on Programming
Languages 3, POPL (2019), 14.

[60] S. Oney, B. A. Myers, and J. Brandt. 2013. Euclase: A
Live Development Environment with Constraints and
FSMs. In 2013 1st International Workshop on Live
Programming (LIVE). 15–18. DOI:
http://dx.doi.org/10.1109/LIVE.2013.6617342

[61] Casey Reas and Ben Fry. 2006. Processing:
Programming for the Media Arts. AI & SOCIETY 20, 4
(Sept. 2006), 526–538. DOI:
http://dx.doi.org/10.1007/s00146-006-0050-9

[62] Steven P. Reiss, Qi Xin, and Jeff Huang. 2018. SEEDE:
Simultaneous Execution and Editing in a Development
Environment. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software
Engineering (ASE 2018). ACM, New York, NY, USA,
270–281. DOI:
http://dx.doi.org/10.1145/3238147.3238182

[63] Clive Richards. 2002. The Fundamental Design
Variables of Diagramming. In Diagrammatic
Representation and Reasoning, Michael Anderson,
Bernd Meyer, and Patrick Olivier (Eds.). Springer
London, London, 85–102. DOI:
http://dx.doi.org/10.1007/978-1-4471-0109-3_5

[64] Yann Riche, Nathalie Henry Riche, Ken Hinckley, Sheri
Panabaker, Sarah Fuelling, and Sarah Williams. 2017.
As We May Ink?: Learning from Everyday Analog Pen
Use to Improve Digital Ink Experiences. In Proceedings
of the 2017 CHI Conference on Human Factors in
Computing Systems (CHI ’17). ACM, New York, NY,
USA, 3241–3253. DOI:
http://dx.doi.org/10.1145/3025453.3025716

[65] Arvind Satyanarayan, Bongshin Lee, Donghao Ren,
Jeffrey Heer, John Stasko, John R. Thompson, Matthew
Brehmer, and Zhicheng Liu. 2020. Critical Reflections
on Visualization Authoring Systems. IEEE Trans.
Visualization & Comp. Graphics (Proc. InfoVis) (2020).
http://idl.cs.washington.edu/papers/

reflections-vis-authoring

[66] Daniel L Schwartz, Jessica M Tsang, and Kristen P
Blair. 2016. The ABCs of how we learn: 26 scientifically
proven approaches, how they work, and when to use
them. WW Norton & Company, Chapter V is for
Visualization.

[67] Beau Sheil. 1983. Environments for exploratory
programming. Datamation 29, 7 (1983), 131–144.

[68] B. Shneiderman. 1983. Direct Manipulation: A Step
Beyond Programming Languages. Computer 16, 8
(1983), 57–69. DOI:
http://dx.doi.org/10.1109/MC.1983.1654471

[69] Johannes Strömberg. 2006. Integrating Constraints with
a Drawing CAD Application. Stockholm University
(2006).

[70] Ivan E Sutherland. 1964. Sketchpad a man-machine
graphical communication system. Simulation 2, 5
(1964), R–3.

[71] Masaki Suwa and Barbara Tversky. 1997. What do
architects and students perceive in their design sketches?
A protocol analysis. Design studies 18, 4 (1997),
385–403.

[72] Steven L. Tanimoto. 1990. VIVA: A Visual Language
for Image Processing. J. Vis. Lang. Comput. 1, 2 (June
1990), 127–139. DOI:
http://dx.doi.org/10.1016/S1045-926X(05)80012-6

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 126 Page 13

http://dx.doi.org/10.1145/1297027.1297073
http://dx.doi.org/10.1109/TVCG.2009.148
http://idl.cs.washington.edu/papers/draco
http://dx.doi.org/10.1145/2702123.2702543
http://dx.doi.org/10.1145/2702123.2702543
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://dx.doi.org/10.1109/LIVE.2013.6617342
http://dx.doi.org/10.1007/s00146-006-0050-9
http://dx.doi.org/10.1145/3238147.3238182
http://dx.doi.org/10.1007/978-1-4471-0109-3_5
http://dx.doi.org/10.1145/3025453.3025716
http://idl.cs.washington.edu/papers/reflections-vis-authoring
http://idl.cs.washington.edu/papers/reflections-vis-authoring
http://dx.doi.org/10.1109/MC.1983.1654471
http://dx.doi.org/10.1016/S1045-926X(05)80012-6

[73] Till Tantau. The TikZ and PGF Packages.
http://sourceforge.net/projects/pgf/

[74] William P. Thurston. 1998. On Proof and Progress in
Mathematics. New directions in the philosophy of
mathematics (1998), 337–355.

[75] Christine D. Tippett. 2016. What Recent Research on
Diagrams Suggests about Learning with Rather than
Learning from Visual Representations in Science.
International Journal of Science Education 38, 5 (March
2016), 725–746. DOI:
http://dx.doi.org/10.1080/09500693.2016.1158435

[76] Linus Torvalds and Junio Hamano. 2010. Git: Fast
version control system. URL http://git-scm. com (2010).

[77] Arie van Deursen, Paul Klint, and Joost Visser. 2000.
Domain-Specific Languages: An Annotated
Bibliography. SIGPLAN Not. 35, 6 (June 2000), 26–36.
DOI:http://dx.doi.org/10.1145/352029.352035

[78] Bret Victor. 2011. Up and Down the Ladder of
Abstraction: A systematic approach to interactive
visualization. (2011).
http://worrydream.com/LadderOfAbstraction/ [Accessed:
2019-09-17].

[79] M. Voelter and V. Pech. 2012. Language Modularity
with the MPS Language Workbench. In 2012 34th
International Conference on Software Engineering
(ICSE). 1449–1450. DOI:
http://dx.doi.org/10.1109/ICSE.2012.6227070

[80] J. Walny, S. Carpendale, N. Henry Riche, G. Venolia,
and P. Fawcett. 2011. Visual Thinking In Action:

Visualizations As Used On Whiteboards. IEEE
Transactions on Visualization and Computer Graphics
17, 12 (Dec 2011), 2508–2517. DOI:
http://dx.doi.org/10.1109/TVCG.2011.251

[81] Hadley Wickham. 2010. A layered grammar of graphics.
Journal of Computational and Graphical Statistics 19, 1
(2010), 3–28.

[82] Wikipedia contributors. 2019. Diffie-Hellman key
exchange — Wikipedia, The Free Encyclopedia. (2019).
https:

//en.wikipedia.org/wiki/Diffie-Hellman_key_exchange

[Online; accessed 05-April-2019].

[83] Eric Willigers, Chris Lilley, Dirk Schulze, Bogdan
Brinza, David Storey, and Amelia Bellamy-Royds. 2018.
Scalable Vector Graphics (SVG) 2. Candidate
recommendation. W3C.
https://www.w3.org/TR/2018/CR-SVG2-20181004/

[84] Katherine Ye, Keenan Crane, Jonathan Aldrich, and
Joshua Sunshine. Designing extensible, domain-specific
languages for mathematical diagrams. In Off the Beaten
Track (OBT’17).

[85] Young Seok Yoon and Brad A Myers. 2014. A
longitudinal study of programmers’ backtracking. In
2014 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC). IEEE, 101–108.

[86] Jiaje Zhang and Donald A Norman. 1994.
Representations in distributed cognitive tasks. Cognitive
science 18, 1 (1994), 87–122.

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 126 Page 14

http://sourceforge.net/projects/pgf/
http://dx.doi.org/10.1080/09500693.2016.1158435
http://dx.doi.org/10.1145/352029.352035
http://worrydream.com/LadderOfAbstraction/
http://dx.doi.org/10.1109/ICSE.2012.6227070
http://dx.doi.org/10.1109/TVCG.2011.251
https://en.wikipedia.org/wiki/Diffie-Hellman_key_exchange
https://en.wikipedia.org/wiki/Diffie-Hellman_key_exchange
https://www.w3.org/TR/2018/CR-SVG2-20181004/

	Introduction
	Background & Related Work
	Conceptual diagrams and their benefits
	Existing designs of diagramming tools
	Empirical studies on diagramming-related activities

	Method
	Participants and recruitment
	Semi-structured interviews
	Analysis

	Results
	Representation finding
	Diagrammers seek existing representations from prior work
	Diagrammers generate new representations to tell new stories
	Diagrammers use sketches to discover appropriate representations

	Choosing the right tools
	People choose DM tools for faster feedback and global control
	People choose programming languages for better abstraction and local control
	Advanced diagrammers use PL tools to automate their diagramming workflows

	Reusing elements from earlier diagrams
	Diagrammers backtrack frequently and informally track prior versions
	Diagrammers organize reuse libraries by representation

	Implications: Natural Diagramming
	Exploration support
	Representation salience
	Live Engagement
	Vocabulary correspondence

	Conclusion and future work
	Acknowledgments
	References

